skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zunger, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 21, 2026
  2. Abstract Transition metald-electron oxides with an odd number of electrons per unit cell are expected to form metals with partially occupied energy bands, but exhibit in fact a range of behaviors, being either insulators, or metals, or having insulator-metal transitions. Traditional explanations involved predominantly electron-electron interactions in fixed structural symmetry. The present work focuses instead on the role of symmetry breaking local structural motifs. Viewing the previously observed V-V dimerization in VO2as a continuous knob, reveals in density functional calculations the splitting of an isolated flat band from the broad conduction band. This leads past a critical percent dimerization to the formation of the insulating phase while lowering the total energy. In VO2this transition is found to have a rather low energy barrier approaching the thermal energy at room temperature, suggesting energy-efficient switching in neuromorphic computing. Interestingly, sufficient V-V dimerization suppresses magnetism, leading to the nonmagnetic insulating state, whereas magnetism appears when dimerization is reduced, forming a metallic state. This study opens the way to design novel functional quantum materials with symmetry breaking-induced flat bands. 
    more » « less
  3. Abstract Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such ‘apparent effects’, ‘hidden effect X’ refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals. Here, we discuss hidden spin polarization effect in collinear antiferromagnets without the requirement for spin-orbit coupling (SOC). Symmetry analysis suggests that antiferromagnets hosting such effect can be classified into six types depending on the global vs local symmetry. We identify which of the possible collinear antiferromagnetic compounds will harbor such hidden polarization and validate these symmetry enabling predictions with first-principles density functional calculations for several representative compounds. This will boost the theoretical and experimental efforts in finding new spin-polarized materials. 
    more » « less
  4. Abstract Energy bands in antiferromagnets are supposed to be spin degenerate in the absence of spin–orbit coupling (SOC). Recent studies have identified formal symmetry conditions for antiferromagnetic crystals in which this degeneracy can be lifted, spin splitting,even in the vanishing SOC (i.e., non‐relativistic) limit. Materials having such symmetries could enable spin‐split antiferromagnetic spintronics without the burden of using heavy‐atom compounds. However, the symmetry conditions that involve spin and magnetic symmetry are not always effective as practical material selection filters. Furthermore, these symmetry conditions do not readily disclose trends in the magnitude and momentum dependence of the spin‐splitting energy. Here, it is shown that the formal symmetry conditions enabling spin‐split antiferromagnets can be interpreted in terms of local motif pairs, such as octahedra or tetrahedra, each carrying opposite magnetic moments. Collinear antiferromagnets with such a spin‐structure motif pair, whose components interconvert by neither translation nor spatial inversion, will show spin splitting. Such a real‐space motif‐based approach enables an easy way to identify and design materials (illustrated in real example materials) having spin splitting without the need for SOC, and offers insights into the momentum dependence and magnitude of the spin splitting. 
    more » « less